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SIMULATION OF THE
GRAVSAT/GEOPAUSE MISSION

David W. Koch
Peter D. Argentiero

ABSTRACT

A simulation of the proposed low Gravsat and high Geopause
satellite mission is presented. This mission promises funda-

mental improvements in the accuracy of low order geopoten-

tial coefficients by using satellite-to-satellite tracking tech-

nology coupled with a global sampling of the gravity field. Ten

days of data from six stations are assumed. A drag compensa-

tion system for the low satellite is also postulated. The results

show a one to two order of magnitude improvement in the accur-

acy of the low order coefficients through degree 8 and order 6.

Furthermore, these results are easily adjusted to reflect a

different data accuracy level and low satellite altitude.
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SIMULATION OF THE

GRAVSAT/GEOPAUSE MISSION

INTRODUCTION

NASA's Earth and Ocean Physics Program (EOPAP) is an ongoing effort to apply

satellite technology to achieve major advances in the earth and ocean sciences.

The prominent feature of the EOPAP is the use of satellites as platforms from

which highly accurate instruments globally can sense and monitor a wide range

of natural phenomena. The accuracy of these instruments has led to demands

for commensurate orbit determination accuracy. As an example, the altimeter

scheduled to be on board the GEOS-C spacecraft will have an altitude resolution

of 1 to 2 meters. Commensurate altitude determination accuracy of GEOS-C

will be difficult to obtain. '2 Another example is the effort to monitor tectonic

plate motions by LASER tracking of satellites.3 Again, the major difficulty is

the lack of adequate orbit determination accuracy.4 It should be mentioned that

other missions not directly related to the EOPAP have similar problems. An

example is the Earth Observation Satellite (EOS) whose sophisticated imaging

equipment cannot be fully exploited until the orbit determination accuracy reaches

approximately the 10 meter level.5 The major impediment to achieving high

orbit determination accuracies is the uncertainty in the low frequency components

of the geopotential field. At present these terms are known to about 5% to 50%

of their nominal values.6 This level of accuracy has been adequate for achiev-

ing the sorts of orbit determination accuracies required for previous satellite

missions. But a significant improvement in the knowledge of these terms is

necessary if the EOPAP is to satisfy its goals. Another and at least equally

powerful argument for the pursuit of this improvement is that with a much more

accurate geopotential field every satellite mission could be performed less

expensively and more efficiently since for a given orbit determination accuracy

less tracking data acquisition and processing would be required.

Present Geopotential fields are based on surface gravity measurements and

satellite perturbation data. But a set of spherical harmonic coefficients does

not achieve orthogonality in non-global blocks of these data types. For geo-

graphical and political reasons satellite perturbation data and surface gravity

data are not well distributed. Consequently, efforts to estimate spherical har-

monic coefficients have been plagued by severe aliasing and a lack of statistical

independence. This is essentially an observability problem and no amount of

additional data obtained from the same well-covered areas will have a significant

effect.



For an accurate satellite determination of the low frequency terms of the geo-
potential field a dense and globally distributed data set is necessary. This
suggests the need for polar satellites in low altitude orbits to insure adequate
sensitivity. It is virtually impossible to continuously track such satellites
from ground based stations. Thus, satellite-to-satellite tracking using a high
relay satellite must be employed. These considerations logically lead to the
concept first suggested by Siry 7 of a dual GRAVSAT/GEOPAUSE mission. The
GRAVSAT/GEOPAUSE satellites are to be coplanar in orbits perpendicular to
both the earth's equator and the ecliptic plane. The high or GEOPAUSE satellite
is placed in a circular orbit at about 3. 6 earth radii above the earth's surface.
The low or GRAVSAT satellite is placed in a circular orbit about 300 km above
the earth's surface. Range rate tracking between GRAVSAT and GEOPAUSE is
relayed from GEOPAUSE to ground-based tracking stations. Six properly chosen
tracking stations, three in the Northern Hemisphere and three in the Southern
Hemisphere, are adequate to maintain constant ground communication with the
GEOPAUSE satellite.

The GRAVSAT satellite should be highly sensitive to geopotential variations.
But at an altitude of 300 km the effects of atmospheric drag are quite signifi-
cant and since an adequate model of atmospheric density is unavailable, a drag
compensation system is assumed to nullify the effects of atmospheric drag and
solar pressure. The spacecraft will consist of two concentric spheres with a
combined weight of 2600 lbs. The outer sphere is externally perturbed by both
gravitational and nongravitational forces but the inner ball is perturbed by
external gravitational forces. In addition, the mutual attraction of the two
spheres generates a small internal force. The inbalance in external perturb-
ing forces causes a gradual displacement of the outer sphere relative to the
inner sphere. Highly accurate sensors on the interior of the outer sphere
detect this displacement and actuate jets to reposition the outer sphere, thus
the GRAVSAT is constrained to follow a purely gravitational orbit. The inner
sphere is influenced not only by the gravity field of the earth but also by the
gravitational attraction exerted by the outer sphere. Imperfect knowledge of
this force leads to a certain aliasing of an estimate of geopotential terms and
must be accounted for in a realistic error study.

This study reports on a numerical simulation of the GRAVSAT/GEOPAUSE
experiment. Ten days of range rate sum data were assumed available. One
data point per minute was assumed to be the data acquisition rate and the accur-
acy was chosen as .2 mm/sec. The fundamental results of the study can be
readily scaled to reflect another accuracy level. It was postulated that low
frequency coefficients of the sblherical harmonic expansion of the geopotential
field were estimated from the data. Uncertainties in the orbits of both satellites
as-wl as data biases were included as error sources. The self-gravitation
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force of the drag compensated satellite was treated as a constant but unknown

force and thus a source of error. The study relies on the techniques of covari-

ance analysis the mathematical basis of which is given in the appendix. What
should be mentioned here is that use of these techniques constrains one to the
assumption that over the range of uncertainties of the uncertain parameters, the

postulated data is a linear function of these parameters.

Attention was focused on the possibilities of extracting from the postulated data

estimates of low frequency geopotential terms which are significantly superior

to present estimates. Since other experiments such as the installing of a gradi-
ometer or altimeter on board the low satellite could become a part of the

GRAVSAT/GEOPAUSE mission, certain orbit determination requirements may

be placed on the GRAVSAT satellite. Thus attention was also given to the

GRAVSAT orbit determination accuracy which is achievable during this mission.

The results indicate that the GRAVSAT/GEOPAUSE mission is capable of pro-

viding the sort of breakthrough in gravity field determination which appears to

be required by the EOPAP. And the order of magnitude improvement in gravity

field knowledge which this study suggests is possible would significantly reduce

the cost of virtually all of NASA's future satellite missions.

SIMULATION DESCRIPTION

The GRAVSAT/GEOPAUSE mission consists of two coplanar satellites in cir-

cular orbits of unequal height perpendicular to both the earth's equator and the

ecliptic. This coplanarity assures sensing by the GEOPAUSE of both in-plane

components of the GRAVSAT orbit. Due to the orbital geometry, the out-of-

plane component is weakly observed. When GEOPAUSE is directly above

GRAVSAT, the former senses a totally radial component whereas when it trails

GRAVSAT by approximately a quarter of a revolution the GEOPAUSE senses a

totally along track component. Between these two extremes varying combina-

tions of the two are observed. Such favorable measurement geometry should

enable the GEOPAUSE to accurately sense GRAVSAT orbital perturbations.

From these perturbations gravity field coefficients can be extracted.

The perpendicularity of the GRAVSAT orbit to the earth's equator guarantees

global sampling of the gravity field. The height of the GEOPAUSE is almost

two orders of magnitude greater than that of GRAVSAT. This results in near

continuous coverage of GRAVSAT by GEOPAUSE. The total sampling of the

gravity field by GRAVSAT and its near continuous coverage by GEOPAUSE are

two basic strengths of the GRAVSAT/GEOPAUSE mission.
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Six ground tracking stations were selected to track GRAVSAT through GEOPAUSE.
These stations were selected based upon their ability to provide continuous global
tracking of the GEOPAUSE during its tracking of GRAVSAT. Thus a complete
well-distributed set of GRAVSAT data is gathered. Such a data set should yield
low correlations between estimates of parameters, and subsequent accurate
estimates. Three Northern Hemisphere stations (Guam, Madrid, and Rosman)
and three Southern (Canberra, Johannesburg, and Santiago) provide such data.
Each station observes range sum rate with a one minute integration time over
a ten-day span. Measurements are assumed corrupted by a random 0.2 mm/
sec noise and a fixed ± 1 mm/sec bias component. These are anticipated
state-of-the-art measurement accuracies for the actual mission at the end of
the decade.

It is assumed that the total force acting upon the GRAVSAT consists of extern-
ally applied atmospheric drag and an internally induced "residual" force. Dur-
ing an actual mission, it is anticipated that this drag will be removed by a sur-
face force compensation system (SFC). Consequently, this report assumes the
final result of an application of a SFC system rather than the application of the
SFC itself. The "residual" force is due principally to the mutual attraction
between the masses of the inner and outer spheres of the GRAVSAT. This force
is assumed to be constant and of unknown magnitude but acting solely in the along
track direction.

The nominal parameters for the simulation follow:

ORBITS: GRAVSAT GEOPAUSE

a(km) 6,678.133 29,431. 213

e 0.0 0.0

i(deg) 90.0 90.0

92 (deg) 90.0 90.0

w (deg) 180.0 180.0

M(deg) 180.0 180.0

h(Km) 300.0 23,053.190

P(hrs) 1.5 14.0

4



TRACKING STATIONS:

1. Northern Hemisphere: Guam, Madrid, and Rosman

2. Southern Hemisphere: Canberra, Johannesburg, and Santiago

MEASUREMENTS AND UNCERTAINTIES:

Range sum rate at one per minute with 0. 2 mm/s noise and ± 1 mm/bias.

PARAMETERS ESTIMATED:

Name Dimension

GRAVSAT state 6

GEOPAUSE state 6

Measurement bias 6

Residual Force Magnitude 1

Geopotential Coefficients from 81

(0, 0) through (8, 6) inclusive

Using the foregoing assumptions, the Navigation Analysis Program, Phase-3,

(NAP-3) parameter estimation program8 9,1 0 was used to generate a 100x100 nor-

mal matrix of estimated parameters for the ten day data span. Thereafter, the

NAP-3 covariance analysis (NAPCOV) program inverted this normal matrix to

perform a generalized uncertainty analysis. This analysis consists of varying

the treatment of parameters and determining correlations and aliasing properties

of the parameters within the normal matrix.

RESULTS

The object of the GRAVSAT/GEOPAUSE mission is to achieve at least an order

of magnitude improvement in present knowledge of the low order spherical har-

monic coefficients of the geopotential field. In order to determine when a sim-

ulation indicates that this goal can be achieved, it is necessary to obtain meas-

ures of how well these parameters are known at present. In6 the Goddard Earth

Model 5 (GEM-5) geopotential field was calibrated against actual observations of

150 by 150 gravity anomalies and nominal standard deviation values were scaled

to be consistent with the residuals. The resultant normalized standard devia-

tions as a percent of Kaula's rule of thumb (105s/12 where 1 is the degree of the
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spherical harmonic coefficient) are displayed in Figure 1. The results of the
GRAVSAT/GEOPAUSE simulation are shown in Figures 2 and 3 as factor im-
provement numbers. The factor improvement for a given geopotential coeffi-
cient is obtained by dividing the present standard deviation of the coefficient as
obtained from Figure 1 by the standard deviation obtained from the simulation.
Figures 2 and 3 demonstrate that one to two orders of magnitude improvement
in present knowledge of the low frequency geopotential field may be expected
from the GRAVSAT/GEOPAUSE mission. In addition, the covariance analysis
indicated that the estimates of the geopotential coefficients are nearly independ-
ent with most correlations between coefficient estimates having absolute values
less than 0. 01.

100

75

0

W 50

25

0 4 8 12 16 20
DEGREE (N)

Figure 1. Present Uncertainty of Low Frequency Geopotential

6



ORDER (M)
0 1 2 3 4 5 6

0 430

1 305 915

2 424 251 294

3 191 152 132 167

4 100 68 71 65 93

5 131 91 94 92 101 152

6 86 59 61 61 64 66 103

7 129 72 86 73 101 83 352

8 113 69 78 73 80 80 94

A PRIORI UNCERTAINTY
IMPROVEMENT FACTOR =

ESTIMATED UNCERTAINTY

Figure 2. Improvement Factor in Cosine Term of Geopotential

7



ORDER (M)
0 1 2 3 4 5 6

0

1 915

2 255 291

z 3 155 130 166

, 4 70 71 65 94

5 92 94 91 100 152

6 60 60 60 65 66

7 74 85 72 101 83

8 70 77 72 80 79

IMPROVEMENT FACTOR A PRIORI UNCERTAINTY
ESTIMATED UNCERTAINTY

Figure 3. Improvement Factor in Sine Term of Geopotential
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The results of the simulation as displayed in Figures 2 and 3 are overly optimis-

tic in the sense that the factor improvements do not reflect the aliasing effects

of uncertainties in higher frequency geopotential coefficients. In practice, in

order to estimate coefficients to degree 8, it would be necessary to estimate

the field to a degree higher than 8 and reject the estimates of higher degree

coefficients due to aliasing. To gain some knowledge of the aliasing structure

of the experiment we simulated as estimation algorithm in which the GRAVSAT

and GEOPAUSE states: bias terms, residual force magnitude, and one arbi-

trarily chosen geopotential term, C(5, 2), are estimated. All other geopotential

coefficients are left unadjusted at nominal values. The a-priori uncertainty in

the unadjusted coefficients were assumed to be those shown in Figure 1. The

covariance analysis software (Appendix 1) was employed to determine the root-

sum-square contribution to the uncertainty in the unnormalized estimate of

C(5, 2) due to the uncertainty in each of the unadjusted coefficients. The root-

sum-square of the aliasing contributions from the sine and cosine coefficients

of a given degree and order were then computed and displayed in the appropriate

square of the alias map of Figure 4. The unnormalized a-priori uncertainty of

C(5, 2) as determined from Figure 1 is approximately 10- 8. Figure 4 shows that

uncertainties in terms of degree as high as 8 have non-negligible contributions

to uncertainties in estimates of terms of degree 5. This indicates that good

estimates of geopotential coefficients are obtained when estimated terms are

separated from unestimated terms by at least 4 degrees. Hence, for a good

determination of the field to degree and order 8, a field of degree and order 12

should be estimated from the data and estimates of terms of degree 9 through

12 discarded due to aliasing.

For this simulation the GRAVSAT satellite was assumed to be in a circular

orbit with altitude 300 km. Since a higher altitude would have a favorable

impact on orbital lifetime and fuel requirements it is useful to scale the results

of Figures 2 and 3 to reflect the experiment results when a higher altitude is

chosen for GRAVSAT. Figure 5 shows the sensitivity of GRAVSAT velocity to

unit perturbations of geopotential terms (normed to 300 km) versus GRAVSAT

altitude. Provided that statistical independence of estimates is maintained,
the ratio of standard deviations of estimates of the same geopotential coefficient

at two different GRAVSAT heights should be inversely proportional to the ratio

of their sensitivities in GRAVSAT velocity data at the two heights. Consider

any geopotential term of degree 8. Its standard deviation at 500 km will be

equal to its standard deviation at 300 km scaled by the ratio of GRAVSAT

velocity sensitivity of 300 km to 500 kin. Figure 5 shows that for such terms,

the standard deviations of their estimates increase by a third if the GRAVSAT

altitude is raised from 300 kmi to 500 km. This suggests that the mission is

feasible at a 500 km GRAVSAT altitude although the statistical independence of

the estimates would be somewhat compromised at the higher altitude. It also
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should be mentioned that the results displayed in Figures 2 and 3 are inversely
proportional to the assumed standard deviation (. 2 mm/sec) of the range rate
sum data. Thus, the results can be readily scaled to reflect another accuracy
level.

ORDER (M)
0 1 2 3 4 5 6

0 .2536

1 .7238 2.350

2 .0710 .0405 7.711

3 65.1 .1848 60.62 .6006
z

m 4 .0880 .0110 1.991 .1384 1.034

5 67.27 .1330 .4564 .9697 .3412

6 .1544 .0161 1.844 .1191 .7611 .0158

7 60.2 .0979 58.76 .2664 .9943 .3495

8 .2028 .0268 2.179 .1160 .7957 .0793

RSS CONTRIBUTIONS X 1010 TO THE
UNCERTAINTY IN THE ESTIMATE

OF C(5,2) DUE TO ADJACENT
UNADJUSTED TERMS

Figure 4. Alias Map for Estimate of C(5,2)

10



.95-

N=2-

_ ,I -90-
02 N=31 _. -

LU -

I I,

0 N=4

0 325 350 375 400 425 450 475 50

GRAVSAT ALTITUDE (KM)

Figure 5. Sensitivity of GRAVSAT Velocity to Unit Perturbations of Geopotential
Terms (Normed to 300 kin) vs GRAVSAT AltitudeTerms (Normed to 300 km) vs GRAVSAT Altitude



Since the GRAVSAT satellite is configured to be in a low polar orbit, the mis-
sion should be attractive to other experimenters. The inclusion of an altimeter
or gradiometer are definite possibilities. Consequently, our ability to recover
GRAVSAT state at various times is important. Figure 6 provides the radial,
along track, and cross track position errors of GRAVSAT as a function of time
from epoch. These errors include the effect of errors in a-posteriori estimates
of geopotential coefficients to degree 8 but do not reflect the effect of uncertain-
ties in estimates of geopotential coefficients of degree greater than 8. If the
effects of uncertainties in higher degree terms were included in the error prop-
agations of Figure 6, the uncertainties in GRAVSAT position could increase by
as much as an order of magnitude. Notice also that the cross track component
of GRAVSAT since it is weakly observed by the coplanar GEOPAUSE satellite,
cannot be estimated as accurately as the along track and radial components.

CONCLUSIONS

The GRAVSAT/GEOPAUSE mission configuration is capable of producing a
global distribution of observations of along track and radial perturbations of the
GRAVSAT satellite. Six tracking stations, three in the Northern Hemisphere,
and three in the Southern Hemisphere are adequate to maintain constant com-
munication with the GEOPAUSE satellite. This insures a global distribution
of data. Assuming 10 days of range rate sum data with a .2 mm/sec accuracy
for a 1 minute integration time, the results of this report show that an order
of magnitude improvement in knowledge of low frequency geopotential coefficients
can be realized. The resultant estimates should be nearly independent with
most correlations of absolute value less than . 01. The aliasing effects of
higher order terms are still considerable, however, and if a spherical harmonic
field of degree and order N is to be estimated, a field complete to at least
degree and order N + 4 must be adjusted in a standard least squares sense.

These results assume a GRAVSAT altitude of 300 km. A sensitivity analysis
indicates that uncertainties in estimates of geopotential coefficients to degree 8
would increase by about a third if the GRAVSAT altitude were increased to
500 km. Some degradation in the statistical independence of coefficient esti-
mates would also be experienced at the higher altitude.
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Figure 6. Propagated GRAVSAT Position Errors
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APPENDIX 1

COVARIANCE ANALYSIS AS APPLIED TO MISSION SIMULATION

COMPUTING COVARIANCE MATRICES

Let Y(m) be an m dimensional vector consisting of the differences between the

correct values of observations of a satellite and nominal values of the observa-

tions as determined from a nominal orbit. Also let z (n) be an n dimensional

vector of differences between actual and nominal values of the state of the

satellite at an epoch and differences between actual and nominal values of

parameters in the dynamic and measurement models whose associated un-

certainties may limit our ability to estimate satellite state from the data. The

sensitivity matrix c (m, n) is defined as that matrix whose element in the ith

row and the jth column is the partial derivative of 3(i) with respect to z(j). A

first order Taylor series expansion of the functional relationship between y and

z about the nominal value of -Z yields

y cZ (A-1)

An orbit determination program in processing observations y of to obtain a

least square adjustment to i computes a so-called normal matrix defined as

77 (n, n) c T wc (A-2)

where w is a weighting matrix and is usually the inverse of the covariance

matrix of the observations y of -. Once an orbit determination program com-

putes and stores the normal matrix, a number of questions can be raised and

answered at very little cost in terms of computation time.

The best estimate of the state of the satellite at epoch is obtained by perform-

ing a least squares adjustment of the state at epoch and all other parameters

with which are associated significant uncertainties. But frequently this straight-

forward approach leads to severe core storage requirements. In practice some

of the parameters in the dynamic and measurement models are estimated along

with state and others are fixed at their nominal values and left unadjusted in the

least squares process. In order to determine the consequences of estimating

some parameters and ignoring others it is useful to compute the covariance

matrix of such a least squares estimation procedure.
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Let t be decomposed into two disjoint parameter sets as follows

x, (, 1)
z =  (A-3)

L X2 ( 2 )

where 'X, is a set of n 1, parameters which are to be estimated in a least squares
process and K2 is a set of n 2 parameters whose nominal values are left un-
adjusted by the least squares process but whose uncertainties are to be con-
sidered in computing the covariance matrix of the resulting estimator. Define
a matrix A(m, n 1) as a matrix whose element in the ith row and jth column is
the partial derivative of Y(i) with respect to x, (j). Analogously define B(m, n 2)as the matrix whose element in the ith row and jth column is the partial deriva-
tive of (i) with respect to x 2 (j). For future reference notice that the normal
matrix 77 of 2 as computed and stored by an orbit determination program and
defined by Equation A-2 can be written as

ATwA ATwB 1

S [BTwA BTwB I

Assume that there exists a priori estimates of I and '2 with properties

x + a, E(a ) 0. E(a :) P 1

x2 = 2 + a2' E( 2 ) 0 E(22T )  P2

and assume that the observation vector y or y has properties

y = + 7, E(v) = 0, E(vvT ) = w- 1

The least squares estimate of 1 is obtained as the value of '1 which minimizes
the loss function

L(x,) = (y-Ax -Bx ) T w(y- Axl -Bx') + (xl' - x 1 )T P;'(x' - x 1 ) (A-5)

16



The resulting least squares estimator of X, is well known to be

-1 = (ATwA + P-)-1 [ATw(y - Bx) + P-1 x ' ]  (A-6)

Define

P = [E ( - x) (x I - x 1) ] (A-7)

A series of substitutions reveals that

x - = (ATwA + P' )-1 ( - ATwBa 2 + ATwV + P'l al )  (A-8)

Equation 8 yields

P = (ATwA + P-')- + (ATwA + Pjj)-' ATwBP 2 BTwA(ATwA + Pi1)-' (A-9)

Notice that the right side of Equation 9 can be computed if one has a priori co-

variance matrices P, and P 2 , and the upper right and upper left portions of the

normal matrix. To determine the covariance matrix of an estimator which

estimates some subset of 2 other than 'x, all that is necessary is to permute

the rows and columns of 77 in the appropriate fashion and proceed as before.

Thus if one assumes that the normal matrix defined by Equation 2 is precom-

puted it becomes an easy matter to obtain the resultant covariance matrix when

any subset of the - parameters are estimated in a least squares sense and the

rest are ignored.

THE ALIAS MATRIX

Assume that all the data has the same variance. Hence

w = (Ic2) - 1 (A-10)

where o2 is the common variance of each data point. Also assume that the a

priori estimates of the unadjusted parameters are independent. Under this

17



assumption the covariance matrix P of x 2 can be written as

S0
r2

PO
S2 2 (A-11)

where i2 is the a priori variance of the ith unadjusted parameter. Also define
a matrix K(nl, n 2) as

K = (ATwA) - 1ATwB (A-12)

With these assumptions Equation 9 yields the following expression for the ith
diagonal element of P

n
2

P(I, I) =  '(ij Cj) (A-13)

j=0

where Pi,o is the ith diagonal element of the matrix (AT A)- 1 (this assumes that
diagonal elements of the matrix PI' are relatively small) and

8i,j =  K(i, j), j > 1 (A-14)

The standard deviation of the ith estimated parameter is given by

1/2

i (;8i.j 7j ) 2 (A-15)

leie the error sensitivity matrix as

S = ( Pi}, i =  1, 2, nl, j = 0, 1, .. n 2  (A-16)
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And finally define the Alias Matrix as

L = Sa (A-17)

where

0-o 0

= (A-18)

0 " n2

The standard deviation of the ith estimated parameter is seen to be the root sum

square of the terms in the ith row of the alias matrix. The elements in the first

column of the alias matrix represent the RSS contribution to the standard devia-

tion of each estimated parameter due to the data noise. The elements in the jth

column, j > 2, represent the RSS contribution to the standard deviation of each

estimated parameter due to the j - 1st unadjusted parameter.

Possession of the alias matrix reveals much of the probability structure of the

postulated least squares estimator. With this information one can quickly de-

termine which error sources are significant with regard to the estimation of a

given parameter.

Propagating Covariance Matrices

Equation 9 provides the covariance matrix of the state x, at some specified

epoch. In many cases it is important to determine how accurately the state

can be determined at some time other than epoch. In order to do this cor-

rectly it is necessary to take into proper account uncertainties in dynamic

parameters. These parameters may be in an estimated mode or in an un-

adjusted mode and to incorporate their effect one resorts to state transition

matrices which presumably have been precomputed by an orbit determination

program. Let 21 (T) be the estimated state at time T. Assume as output from

an orbit determination program the state transition matrices

a 1(T) CIX, (T)
, (T) =  , 2 (A-19)
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If there are no dynamic parameters in the estimation vector x 1, the matrix

V, (T) takes on the particularly simple form,

V 1 (T) = j (A-20)

where 8 is the six by six matrix defined as the partial derivative matrix of the
state of the satellite at time T with respect to the state of the satellite at epoch.
If dynamic parameters are included in the estimated state, the off diagonal
matrices become non-zero and v, (T) assumes a more complicated form.
The matrix v, (T) is the matrix of partial derivatives of the state 1 (T) with
respect to the unadjusted parameters 2 . If no dynamic parameters are in
the unadjusted mode, V2 (T) is the null matrix. A first order Taylor series
expansion of the function which describes the time evolution of the state 1 (T)
yields

x, (T) =  _I (T) x + V2 (T) X2 (A-21)

Substituting xl as obtained from Equation 6 for '1 and x 2' for '2 provides the
best estimate x (T), of xI (T)

xl (T) v1 (T) x + v2 (T) x, (A-22)

The covariance matrix of x 1 (T) is given by

P(T) = V 1 (T) PVT (T) + v2 (T) P2 V2T (T) + V1 (T) E [x x ] 2(T)

+ 2 (T) E T[x x T] T (T) (A-23)

Equation 23 in conjunction with Equations 6 and 9 yields

P(T) = V, (T) (AT wA t P '1)-1 -T (T) + [ 1 (T) (AT wA + P1)-1 AT w B

-v,(T)] P 2 [V 1(T) (ATwA + P1)- 1 ATwB - v2 (T)]T (A-24)
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Finally notice that in much the same fashion that Equation 9 was used to de-
velop an alias matrix at epoch, Equation 24 can be utilized to develop an alias
matrix for any time T.

REMARKS

If one possesses a functioning orbit determination program it becomes a rela-
tively easy matter to add covariance analysis capability to the system. A com-
puter program can be written which assumes as input a normal matrix and state
transition matrices as generated by the orbit determination program. By
permuting the rows and columns of the normal matrix and completing the
matrix operations defined by Equation 9, the covariance matrix of a least
square process which adjusts any subset of the parameters and ignores the
rest can be computed. An alias matrix can be obtained and significant error
sources can be identified. By utilizing the precomputed state transition matri-
cies, the covariance matrix of the estimate of the state can be propagated from
epoch to any other time. These operations are very simple and they consume
little computer time.

Since the normal matrix and state transition matrices are computed once and
permanently stored, it is possible to investigate a large number of possible
estimation strategies. This can be done conveniently and cheaply. For many.
applications such a program is a useful and quickly developed addition to an orbit
determination system.
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APPENDIX 2

NAP/NAPCOV COMPUTER PROGRAMS

The Navigation Analysis Program, Phase-3, (NAP-3),'9,' is a conventional pa-

rameter estimation program which utilizes a least squares iterative process

to extract estimates and uncertainties of parameters from data and initial esti-

mates of these parameters. The program can process data of 26 different types

of measurements to estimate as many as 30 different types of parameters. A

maximum of 100 individual parameters can be estimated. NAP-3 can also

simulate the orbit determination process in which only uncertainties of selected

are estimated. This particular program is the latest version of a series of

estimation programs starting with the GEOS Data Adjustment Program (GDAP),

NAP-i, and NAP-2.

NAP-3 is divided into three functional modules: Data Edit, Partials, and

Solver. Information between the three is passed via common blocks and/or

files. Data Edit checks and organizes the input data and outputs initial condi-

tions. The Partials module integrates the nominal trajectory, computes meas-

urements, generates partial derivatives of each measurement with respect to

each parameter to be estimated, and computes measurement discrepancies.

The third and final module, Solver, receives these partial derivatives and dis-

crepancies to form and solve the normal equations. Convergence tests occur

at this point. Upon convergence the final estimate and its uncertainties are

output. Thereupon a square normal matrix is passed to the NAP-3 Covariance

Analysis (NAPCOV) Program." The NAPCOV program inverts this matrix and

by manipulating appropriate rows and columns can partition the parameters

within the normal matrix into "solve for" and "consider" categories. Thus the

user has the flexibility to rearrange the parameters to his choosing and deter-

mine the effects of the "consider" upon the "solve for" parameters. Further-

more the program computes correlations and the "aliasing" or degrading effect

upon certain parameters. Together the NAP and NAPCOV programs allow the

user to perform in-depth analysis of a wide variety of parameter estimation

problems.
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